Learning Heuristics for Minimum Latency Problem with RL & GNN

Siqi Hao, Salar Hosseini, Philip Huang, Mohamed Khodeir December 6, 2021

Problem

- Minimum Latency Problem
- Why is it important?

Typically in Traveling Salesman Problem ...

Minimize the total travel time of the delivery person

What if we want to be more customer-oriented ?

Minimize the total latency experienced at every node

Minimum Latency Problem (MLP)

 π_1 π_2 c_{12} π_0 c_{01} MLP Objective π_3 $\min_{\pi} \sum_{r}$ π_4

Graph: G = (V, E)Cost: $c(\pi_i, \pi_j)$ between every pair of nodes Path: $\pi = \{\pi_0, \pi_1, \pi_2, ... \pi_n\}$ MLP Objective Latency at node i n i-1

 $\inf_{\pi} \sum_{i=1}^{n} \sum_{j=0}^{n-1} c(\pi_j, \pi_{j+1})$ Total latency except the starting node

Can a TSP solution solve MLP too?

Example in 1-d 11 t4 t₃ t1 S t₂ An optimal TSP route The best MLP route $s \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4$ $S \rightarrow t_3 \rightarrow t_1 \rightarrow t_2 \rightarrow t_4$ has a total latency of has a total latency of 1 + 7 + 16 + 27 = 512 + 5 + 11 + 31 = 49

Early decisions can have a significant impact on overall cost (because the latency adds up)

No way to decompose the problem into smaller subproblems easily

Main Contributions

We apply reinforcement learning and attention-based graph neural networks to solve the NP-hard minimum latency problem.

 Our solution are on par with domain-specific, hand-engineered solutions from literature.

Related Works

- GILS-RVND
- RL for CO
- GNN

History of Problem Formulations

Delivery man problem [1]

- Symmetric Graph

Traveling repairman problem [2]

- Each node also takes some time to repair
- Asymmetric Graph (by adding repair time of the node to the travel time of all outgoing edges)

Exact / Approximate / Heuristic Solutions

Exact Solutions

- Integer Programming Formulations [1, 2, 3] and solve with CPLEX
- Branch-cut-price [4] can solve 106 nodes (largest graph with optimal solution)

Approximate Solutions

- Blum et.al [5] gives a polynomial time, 72-approximation ratio algorithm
- Chaudhri et.al [6] gives a 3.59-approximation ratio algorithm

Heuristics

• **GILS-RVND** [7] can give high-quality solutions for up-to 1000 nodes

GILS-RVND

For i = 1 ... M:

Construct an initial solution with GRASP (Greedy Randomized Adaptive Search Procedures)

do

Improve the solution with RVND (Randomized-order Variable Neighborhood Descent)

Update the best seen solution if possible

Perturb the current solution locally

until ILS (iterative local search) has not improved the best seen solution for N steps

RL for combinatorial optimization

Formulate CO as an MDP and

- Learn a construction heuristic
- Learn an improvement heuristic
- Learn a branching policy in branch-and-bound

- RL Training (see survey [8])
 - Value-based (i.e. Q-learning, DQN)
 - Policy-based (i.e. REINFORCE, PPO, A3C,)
 - MCTS

. . .

How to encode graph problem structure?

- Key idea:
 - Learn a representation at each node that encodes crucial graph structure for the CO problem
 - Scale linearly with # nodes and # edges
- Structure2Vec (S2V) in Khalil et al. [9]

- Survey Paper from Cappart et.al. [10]
- Attention-based encoder-decoder in Kool et al. [11]

Methodology

- Graph Attention Network
- Optimization
- Implementation Details

Problem Formulation

Given:

• Problem instance *s* with a fixed starting node and *n* nodes to visit (each specified by 2d-coordinates)

Goal:

• Construct a tour through all graph nodes $\pi = \{\pi_0, \pi_1, \pi_2, \dots, \pi_n\}$ (π_0 fixed) using a stochastic policy $p_{\theta}(\pi|s) = \prod_{t=1..n} p_{\theta}(\pi_t|s, \pi_{0:t-1})$ with parameters θ

Problem Formulation

Goal:

• Construct a tour through all graph nodes $\pi = \{\pi_0, \pi_1, \pi_2, \dots, \pi_n\}$ (π_0 fixed) using a stochastic policy $p_{\theta}(\pi|s) = \prod_{t=1..n} p_{\theta}(\pi_t|s, \pi_{0:t-1})$ with parameters θ

MDP formulation (for each of the *n* timesteps *t*):

- State: the partial tour constructed $\pi_{0:t-1}$
- Actions: select an unvisited node π_{t}
- Reward: negative cost of partial tour $\pi_{0:t}$
- Discount factor: 1

Method Overview

- To encode the node selection policy $p_{\theta}(\pi | s)$, adapt the encoder-decoder based graph attention network implemented by Kool et al. [11]
 - Effectiveness already demonstrated on multiple routing problems such as TSP
 - Previously tested on graphs with up to 100 nodes
- This model is autoregressive, so outputs can be conditioned on partial tours
- Main components:

Attention-based Encoder

- All node coordinates x, are embedded to 128-d $h_i^{(N)}$ using N=3 attention layers
 - Each layer consists of a multi-headed attention (MHA) and feed-forward (FF) sublayer
 - Each MHA has *M=8* attention heads, and FF layer has hidden dimension 512 & RELU activation
- Graph embedding $\mathbf{h}_{(g)}^{(N)}$ is computed as mean of all $\mathbf{h}_{i}^{(N)}$

Attention-based Decoder

- At each time step t = 1..n, the decoder computes $p_{\theta}(\pi_t = i \mid s, \pi_{0:t-1}) \forall i \in \{1, ..., n\}$
 - A context embedding $\mathbf{h}_{(c)}^{(N)} = [\mathbf{h}_{(g)}^{(N)}, \mathbf{h}_{t-1}^{(N)}]$ and all node embeddings $\mathbf{h}_{i}^{(N)}$ are inputted to a MHA layer which computes a new context node embedding $\mathbf{h}_{(c)}^{(N+1)}$
 - A single attention head + softmax layer computes compatibility with all unvisited nodes
- Visited nodes are masked out

Decoding Methods

- Given $p_{\theta}(\pi_t = i \mid s, \pi_{0:t-1})$ at each time step *t*, either greedy or sampling-based decoding can be used:
 - **Greedy decoding**: select the node *i* with the highest probability
 - Sampling-based decoding: randomly select a node using the given probability distribution
- Trade-off between runtime and solution quality:
 - Greedy is faster as it only produces 1 solution of reasonable quality
 - Sampling can be used to sample *W* solutions and select the best (slower but higher quality)
 - Following [11], we use W = 1280

Policy Optimization

• Given the policy $p(\pi|s) = p_{\theta}(\pi|s)$ and the cost of the sampled MLP tour $L(\pi)$, the loss function is

 $\mathcal{L}(\Theta|s) = \mathbb{E}_{\rho(\pi|s)}[L(\pi)]$

- To optimize $\mathcal{L}(\Theta|s)$, use grad. descent on the REINFORCE grad. estimate [12] $\nabla \mathcal{L}(\Theta|s) = \mathbb{E}_{p(\pi|s)}[(\mathcal{L}(\pi) - b(s))\nabla log(p(\pi|s))]$
- *b(s)* is a greedy baseline (tour cost from best greedy policy so far)
- After each epoch, the baseline is replaced by the training policy if there is significant improvement (according to a t-test over 10k instances)

Implementation Details

- Used the ADAM optimizer with a constant learning rate of 10⁻⁴
 - Trained the policy using 1 GPU with a batch size of 1024
 - Trained for 140 epochs (except for 100-node graphs, trained for 200 epochs)
- Used CPU during test time for fair comparison to other methods
- The code is largely based on that of Kool et al. [M1] with modifications to problem environment, loss function, decoder context, and data generation.

Implementation Details

- Used 1 GPU for training and multiple CPUs during test time for fair comparison to other methods
- The code is largely based on that of Kool et al. [11] with modifications to the loss function, decoder context, and data generation

Experimental Setup

- Dataset
- Baseline Methods
- Evaluation Metrics

Dataset

2-D synthetic datasets

- Locations randomly sampled from [0, 1]²
- Cost matrix $C = (c_{ij})$ defines the edge costs

Service time for node i

$$c_{ij} = t_{ij} + \dot{s_i}$$
 $s_i = 0$ [symmetric

Euclidean distance between node i and node j

Dataset

2-D synthetic datasets

Three classes [3]:
S0:
$$s_i = 0$$
 [symmetric]
S1: $s_i \sim \left[0, \frac{t_{max} - t_{min}}{2}\right]$ [asymmetric]
S2: $s_i \sim \left[\frac{t_{max} + t_{min}}{2}, \frac{3t_{max} - t_{min}}{2}\right]$

- Locations randomly sampled from $[0, 1]^2$
- Cost matrix $C = (c_{ij})$ defines the edge costs

Baseline Methods

• Exact: CPLEX MIP [3]

- \circ Solve for small graphs with up to 30 nodes
- Default CPLEX setting
- 2 hour limit

Baseline Methods

• Exact: CPLEX MIP [3]

- \circ Solve for small graphs with up to 30 nodes
- Default CPLEX setting
- 2 hour limit

• Heuristics:

- Nearest Neighbor (NN) -- greedy
- Nearest Neighbor-softmax (NN-softmax) -- sampling-based
- GILS-RVND [9] -- state-of-the-art MLP heuristic

Evaluation Metrics

Symmetric graphs with N = 10, 20, 30, 50, 100 25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

Evaluation Metrics

Symmetric graphs with N = 10, 20, 30, 50, 100 25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

- Quality of solutions
 - Optimality gap for small graphs (up to 30 nodes)
 - Objective values of different heuristics for all graph sizes
- Runtime
- Generalization to different sizes

Experimental Results

- Optimality on Small Graphs
- Scaling to Large Graphs
- Generalization Over Graph Sizes

Optimality on Small Graphs

	nn	rl-greedy	nn-softmax	$_{\rm gils}$	rl-sample
size					
10	5.1664	0.2960	1.7978	1.6027	0.0001
15	7.3307	_	0.8155	1.4142	-
20	6.5527	1.0409	1.3706	1.3758	0.5790
25	10.9506	-	2.1460	0.9404	-
30	10.3219	2.5990	1.9768	0.8012	0.9650

Scaling to Larger Graphs

	$\mathbf{n}\mathbf{n}$		rl-greedy		nn-softmax		gils		\mathbf{rl} -sample	
	$\cos t$	$\operatorname{runtime}$	$\cos t$	$\operatorname{runtime}$	$\cos t$	$\operatorname{runtime}$	$\cos t$	$\operatorname{runtime}$	$\cos t$	runtime
size										
10	13.70	0.01	13.09	0.01	13.27	0.42	13.26	0.00	13.05	0.05
15	22.87	0.01	-	-	21.51	0.64	21.64	0.00	-	-
20	36.25	0.01	34.36	0.02	34.47	0.85	34.46	0.01	34.19	0.10
25	51.46	0.01	-	-	47.41	1.07	46.88	0.02	-	-
30	65.61	0.01	61.09	0.02	60.72	1.30	60.02	0.03	60.11	0.21
50	140.83	0.01	131.90	0.04	130.27	2.23	126.88	0.25	128.90	0.57
100	390.56	0.01	365.90	0.07	362.22	4.88	343.92	4.93	354.30	2.46

Generalization to Different Sizes

	$N_{train} = 10$	$N_{train} = 50$	$N_{train} = 100$
N_{test}			
10	0.00	5.90	14.50
20	2.02	3.84	5.95
30	6.73	1.26	4.89
50	14.86	0.00	2.12
100	26.61	0.98	0.00

Generalization to Different Sizes (Optimality)

Conclusion

- RL is a compelling approach for deriving construction heuristics for the Minimum Latency Problem
 - Competitive with hand-engineered approaches at low run-times

Next Steps

- Can the solutions constructed by RL be synergistically combined with local search methods (i.e. GILS) to produce even higher quality results?
- Evaluate on asymmetric graphs where service times are non-zero

Thank you for listening!

Questions?

References

[1] F. Angel-Bello, A. Alvarez, and I. García, "Two improved formulations for the minimum latency problem," Applied Mathematical Modelling, vol. 37, no. 4, pp. 2257–2266, 2013.

[2] van Ca Cleola Eijl, "A polyhedral approach to the delivery man problem," 1995.

[3] I. Méndez-Díaz, P. Zabala, and A. Lucena, "A new formulation for the traveling deliveryman problem,"Discrete applied mathematics, vol. 156, no. 17, pp. 3223–3237, 2008.

[4] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, "The time dependent traveling salesman problem: polyhedra and algorithm," Mathematical Programming Computation, vol. 5, no. 1, pp.27–55, 2013.

[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan, "The minimum latency problem," inProceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, ser. STOC '94.New York, NY, USA: Association for Computing Machinery, 1994, p. 163–171.

[6] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, "Paths, trees, and minimum latency tours," in FOCS '03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science.IEEE, January 2003, p. 36.

[7] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, "A simple and effective metaheuristic for the minimum latency problem", European Journal of Operational Research, vol. 221, no. 3, pp. 513–520, 2012.

[8] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, "Reinforcement learning for combinatorial optimization: A survey," Computers Operations Research, vol. 134, p. 105400, 2021

[9] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, "Learning combinatorial optimization algorithms over graphs,"

[10] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veli'ckovi c, "Combinatorial optimization and reasoning with graph neural networks," 2021.

[11] W. Kool, H. van Hoof, and M. Welling, "Attention, learn to solve routing problems!" 2019.

[12] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," Mach. Learn., vol. 8, no. 3–4, p. 229–256, May 1992. [Online]. Available: https://doi.org/10.1007/BF00992696