Learning Heuristics for Minimum
Latency Problem with RL & GNN

Siqgi Hao, Salar Hosseini, Philip Huang, Mohamed Khodeir
December 6, 2021

PFO b | e m e Minimum Latency Problem

e Why is it important?

Typically in Traveling Salesman Problem ...

Waltham

Killingly @ Frovi @ IC{

Minimize the total travel time of the delivery person

What if we want to be more customer-oriented ?

Waltham 1
X Boston
-’ ’ LS : @ ‘

Killingly @

Minimize the total latency experienced at every node

Minimum Latency Problem (MLP)
Graph: G = (V, F)

T Cost: ¢(m;, ;) between every pair of nodes

‘ C1a . B : ,
Ty co1 Path: 7 = {7TO77T177T27 Trn}

MLP Objective

Latency at node i
N

T4 min E E 7rJ,7rj+1)

7,—1] 0

>
Total latency except the starting node

Can a TSP solution solve MLP too?

Example in 1-d

o 11 . PSR OO S
ta t3 s t1 t2
An optimal TSP route The best MLP route
S>t->tL2>t3>14 S>B>t>12>14
has a total latency of has a total latency of
1+7+16 + 27 =51 2+5+11+31=49

Early decisions can have a significant impact on overall cost (because the latency adds up)

No way to decompose the problem into smaller subproblems easily 5

Main Contributions

< We apply reinforcement learning and attention-based graph neural networks to

solve the NP-hard minimum latency problem.

% Our solution are on par with domain-specific, hand-engineered solutions from

literature.

Related Works . GILS.RVND

e RL for CO
e GNN

History of Problem Formulations

Delivery man problem [1]
- Symmetric Graph
Traveling repairman problem [2]

- Each node also takes some time to repair
- Asymmetric Graph (by adding repair time of the node to the travel time of all
outgoing edges)

Exact / Approximate / Heuristic Solutions

Exact Solutions

e Integer Programming Formulations [1, 2, 3] and solve with CPLEX
e Branch-cut-price [4] can solve 106 nodes (largest graph with optimal solution)

Approximate Solutions

e Blum et.al [5] gives a polynomial time, 72-approximation ratio algorithm
e Chaudhri et.al [6] gives a 3.59-approximation ratio algorithm

Heuristics

e GILS-RVND [/] can give high-quality solutions for up-to 1000 nodes

10

GILS-RVND

Fori=1..M:
Construct an initial solution with GRASP (Greedy Randomized Adaptive Search Procedures)
do
Improve the solution with RVND (Randomized-order Variable Neighborhood Descent)
Update the best seen solution if possible
Perturb the current solution locally

until ILS (iterative local search) has not improved the best seen solution for N steps

1

RL for combinatorial optimization

Formulate CO as an MDP and

Learn a construction heuristic
Learn an improvement heuristic
Learn a branching policy in branch-and-bound

RL Training (see survey [8])

Value-based (i.e. Q-learning, DQN)
Policy-based (i.e. REINFORCE, PPO, A3C,)
MCTS

MDP

Agent

|States/Rewards

Actions

12

How to encode graph problem structure?

e Keyidea:

o Learn a representation at each node that encodes crucial graph structure for the CO problem
o Scale linearly with # nodes and # edges

e Structure2Vec (S2V) in Khalil et al. [9]

/™)
O

e Survey Paper from Cappart et.al. [10]
e Attention-based encoder-decoder in Kool et al. [11]

13

Methodology

Graph Attention Network
Optimization
Implementation Details

14

Problem Formulation

Given:

e Problem instance s with a fixed starting node and n nodes to visit (each

specified by 2d-coordinates)
Goal:
e Construct a tour through all graph nodes & = {r, 7, 7

stochastic policy p(zls) =I1_, _p(rls.z,..)

2’

.., T } (7, fixed) using a
with parameters O

15

Problem Formulation

Goal:

e Construct a tour through all graph nodes & = {z, 7, &

stochastic policy p (zls) = 11

p o -5 T} (T, fixed) using a

(T ls,t ., ,) with parameters O

t=1..n 'OO O:t1

MDP formulation (for each of the n timesteps 1):

State: the partial tour constructed =z, ,
Actions: select an unvisited node ,
Reward: negative cost of partial tour
Discount factor: 1

16

Method Overview

e To encode the node selection policy p (7ls), adapt the encoder-decoder based

graph attention network implemented by Kool et al. [11]
o Effectiveness already demonstrated on multiple routing problems such as TSP
o Previously tested on graphs with up to 100 nodes
e This model is autoregressive, so outputs can be conditioned on partial tours

e Main components:

o Attention-based Encoder & Decoder
o REINFORCE optimization with baseline Construct partial
tour x n

Node
Graph embeddings

MLP tour

instance

REINFORCE gradient update 17

Attention-based Encoder

e All node coordinates x, are embedded to 128-d h,.‘N’ using N=3 attention layers

Each layer consists of a multi-headed attention (MHA) and feed-forward (FF) sublayer

O
Each MHA has M=8 attention heads, and FF layer has hidden dimension 512 & RELU activation

(@)

e Graph embedding h(g)‘N’ is computed as mean of all h™

ﬁncoder

O Node input

O Node embedding

O Graph embedding

¢ Message
+ Projection

+ Skip connection

; Attention query

Image source: [11]

18

Attention-based Decoder

® Ateachtime stept=1.n, the decoder computes p (t=ils, 7,)V i€{l, .., n}
o A context embedding h(c)‘N) = [h(g)‘N’, h, ™1 and all node embeddings h™ are inputted to a MHA
layer which computes a new context node embedding h(c)‘N”’
o Asingle attention head + softmax layer computes compatibility with all unvisited nodes

e Visited nodes are masked out

/ B WY B ™ h(h ,/
©® I

B @ @ @ @ Q Q Q\ Concatenation
: : : : O

|| Output probability

MHA |
e

@ 8.0

«© 7 mp pzﬂ

v

k A Decoder t = 1

Image source: [11]

¢ Message

; Attention query

. Compatibility

i Identity / reference

Decoding Methods

Givenp (t=1ils, 7,) at each time step ¢, either greedy or sampling-based

decoding can be used:

o Greedy decoding: select the node i with the highest probability

o Sampling-based decoding: randomly select a node using the given probability distribution
Trade-off between runtime and solution quality:

o Greedy is faster as it only produces 1 solution of reasonable quality
o Sampling can be used to sample W solutions and select the best (slower but higher quality)
m Following [11], we use W =1280

20

Policy Optimization

e Given the policy p(rls) = p (ls) and the cost of the sampled MLP tour L(x), the
loss function is

LOls)=E . [L7)]

p(rls)

e To optimize L(Ols), use grad. descent on the REINFORCE grad. estimate [12]
VLOls) = B, [(Lix) - b(s)) V log(plls))

® D(s)is a greedy baseline (tour cost from best greedy policy so far)
e After each epoch, the baseline is replaced by the training policy if there is
significant improvement (according to a t-test over 10k instances)

21

Implementation Details

e Used the ADAM optimizer with a constant learning rate of 10

o Trained the policy using 1 GPU with a batch size of 1024
o Trained for 140 epochs (except for 100-node graphs, trained for 200 epochs)

e Used CPU during test time for fair comparison to other methods
e The code is largely based on that of Kool et al. [M1] with modifications to

problem environment, loss function, decoder context, and data generation.

22

Implementation Details

e Used 1GPU for training and multiple CPUs during test time for fair comparison
to other methods

e The code is largely based on that of Kool et al. [11] with modifications to the
loss function, decoder context, and data generation

23

Experimental
Setup

e Dataset
e Baseline Methods
e FEvaluation Metrics

24

Dataset

2-D synthetic datasets

e Locations randomly sampled from [0, 1]
e Cost matrix C = (¢;;) defines the edge costs

™

2

C12 Service time for node i

o co1

f
T3 Cf,;j = tZJ -+ Si 5i = () [symmetric

l

Euclidean distance between
node i and node j

25

Three classes [3]:

Dataset so: s; =0 symmetric

S1 S'i ~J [O, tmam_tmin

2

asymmetric

2-D synthetic datasets

52: S’I, A [tmam;tmin, 3tma:z:2_tmin

e Locations randomly sampled from [O, 1]

e Cost matrix ¢ = (¢;;) defines the edge costs

t1
t2 Service time for node i
C12

f
Cij — t'l,] + 87; s; = 0 for starting node

l

Euclidean distance between
node i and node j

t3

ta 26

Baseline Methods

e Exact: CPLEX MIP [3]

o Solve for small graphs with up to 30 nodes
o Default CPLEX setting
o 2 hour limit

27

Baseline Methods

e Exact: CPLEX MIP [3]

o Solve for small graphs with up to 30 nodes
o Default CPLEX setting
o 2 hour limit

e Heuristics:

o Nearest Neighbor (NN) -- greedy
o Nearest Neighbor-softmax (NN-softmax) -- sampling-based
o GILS-RVND [9] -- state-of-the-art MLP heuristic

28

Evaluation Metrics

Symmetric graphs with N =10, 20, 30, 50, 100
25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

29

Evaluation Metrics

Symmetric graphs with N =10, 20, 30, 50, 100
25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

e Quality of solutions

o Optimality gap for small graphs (up to 30 nodes)
o Objective values of different heuristics for all graph sizes

e Runtime
e Generalization to different sizes

30

Experimental
Results

Optimality on Small Graphs
Scaling to Large Graphs
Generalization Over Graph
Sizes

31

Optimality on Small Graphs

Optimality Gap %

101 .

100 .

10—1 .

102 5

103 4

10—4 .

nn

nn rl-greedy

nn-softmax gils rl-sample

size

10 [5.1664 0.2960 1.7978 1.6027 0.0001
15 | 7.3307 - 0.8155 1.4142 -

20 | 6.5527 1.0409 1.3706 1.3758 0.5790
25 |10.9506 - 2.1460 0.9404 -

30 [10.3219 2.5990 1.9768 0.8012 0.9650

nn-softmax
gils
—— rl-greedy
— rl-sample
10 15 20 25 30
Size

32

nn rl-greedy nn-softmax gils rl-sample
cost runtime cost runtime| cost runtime cost runtime cost runtime
size

Sca“ng to Larger Graphs 10 [13.70 001 13.09 0.01 gi*{' géi ;;1%22 g:gg 13.05 0.0

15 2287 0.01 - - -
20 [36.25 0.01 34.36 0.02 |3447 0.85 3446 0.01 34.19 0.10
25 |51.46 0.01 - - 4741 1.07 46.88 0.02 - -

30 [65.61 001 61.09 0.02 [60.72 130 60.02 0.03 60.11 0.21
50 [140.83 0.01 131.90 0.04 |130.27 2.23 126.88 0.25 128.90 0.57
100 {390.56 0.01 365.90 0.07 [362.22 4.88 343.92 4.93 354.30 2.46

0_. _______________________________________
3 10° 4
=z
=
e 0
[0) o 10—1_
.% -g
< [
o
>
= 1072 4
©
>
o
10_3 T T T T T
20 40 60 80 100
Size
-==nn —== nn-softmax === gils —— rl-greedy —— rl-sample

33
s

Generalization to Different Sizes

Quality Relative to In-Distribution Model (%)

25 1

20 -

15 ~

10 A

—— Nyain= 10
— Ntrain =50
—— Nirain =100
=== Ntrain = Ntest
——- NN Baseline

-thrain, =10 thrain =50 l\rtrain. = 100

Niest

10 0.00 5.90 14.50
20 2.02 3.84 5.95
30 6.73 1.26 4.89
50 14.86 0.00 2.12
100 26.61 0.98 0.00

Test Instance Size

34

Generalization to Different Sizes (Optimality)

Optimality Gap %

10 15 20 25 30
Size
-==- nn —— N_train=10 —— N_train=20 —— N_train=30

35

Conclusion

e RL is a compelling approach for deriving construction heuristics for the

Minimum Latency Problem
o Competitive with hand-engineered approaches at low run-times

Next Steps

e Can the solutions constructed by RL be synergistically combined with local
search methods (i.e. GILS) to produce even higher quality results?
e Evaluate on asymmetric graphs where service times are non-zero

36

Thank you for listening!

Questions?

37

References

[1 F. Angel-Bello, A. Alvarez, and I. Garcia, “Two improved formulations for the minimum latency problem,”Applied Mathematical Modelling, vol. 37, no. 4, pp. 2257-2266, 2013.

[2] van Ca Cleola Eijl, “A polyhedral approach to the delivery man problem,” 1995.

[3]1. Méndez-Diaz, P. Zabala, and A. Lucena, “A new formulation for the traveling deliveryman problem,”Discrete applied mathematics, vol. 156, no. 17, pp. 3223-3237, 2008.

[4] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, “The time dependent traveling salesman problem: polyhedra and algorithm,”"Mathematical Programming Computation, vol. 5, no. 1, pp.27-55, 2013.

[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan, “The minimum latency problem,” inProceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, ser.
STOC '94.New York, NY, USA: Association for Computing Machinery, 1994, p. 163-171.

[6]K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, “Paths, trees, and minimum latency tours,” in FOCS 03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science.|lEEE, January 2003, p. 36.

[7] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, “A simple and effective metaheuristic for the minimum latency problem”, European Journal of Operational Research, vol. 221, no. 3, pp. 513-520, 2012.
[8] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for combinatorial optimization: A survey,”"Computers Operations Research, vol. 134,p. 105400, 2021

[9] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,”

[10] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veli"ckovi'c, “Combinatorial optimization and reasoning with graph neural networks,” 2021.

[11] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!” 2019.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4, p. 229-256, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992696

38
s

