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Problem ● Minimum Latency Problem
● Why is it important?
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Typically in Traveling Salesman Problem …

Minimize the total travel time of the delivery person
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What if we want to be more customer-oriented ?

Minimize the total latency experienced at every node
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Minimum Latency Problem (MLP)

Graph: 

Cost:    between every pair of nodes

Path: 

MLP Objective
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Latency at node i

Total latency except the starting node



Can a TSP solution solve MLP too?

Example in 1-d

An optimal TSP route The best MLP route

s -> t1 -> t2 -> t3 -> t4 s -> t3 -> t1 -> t2 -> t4

has a total latency of has a total latency of

1 + 7 + 16 + 27 = 51 2 + 5 + 11 + 31 = 49

Early decisions can have a significant impact on overall cost (because the latency adds up)

No way to decompose the problem into smaller subproblems easily 6



Main Contributions

❖ We apply reinforcement learning and attention-based graph neural networks to 

solve the NP-hard minimum latency problem.

❖ Our solution are on par with domain-specific, hand-engineered solutions from 

literature.
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Related Works ● GILS-RVND
● RL for CO
● GNN
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History of Problem Formulations

Delivery man problem [1]

- Symmetric Graph

Traveling repairman problem [2]

- Each node also takes some time to repair
- Asymmetric Graph (by adding repair time of the node to the travel time of all 

outgoing edges )
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Exact / Approximate / Heuristic Solutions

Exact Solutions

● Integer Programming Formulations [1, 2, 3] and solve with CPLEX
● Branch-cut-price [4] can solve 106 nodes (largest graph with optimal solution)

Approximate Solutions

● Blum et.al [5] gives a polynomial time, 72-approximation ratio algorithm
● Chaudhri et.al [6] gives a 3.59-approximation ratio algorithm

Heuristics

● GILS-RVND [7] can give high-quality solutions for up-to 1000 nodes
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GILS-RVND

For i = 1 … M:

Construct an initial solution with GRASP (Greedy Randomized Adaptive Search Procedures)

do

Improve the solution with RVND (Randomized-order Variable Neighborhood Descent)

Update the best seen solution if possible

Perturb the current solution locally

until ILS (iterative local search) has not improved the best seen solution for N steps

11



RL for combinatorial optimization

Formulate CO as an MDP and

● Learn a construction heuristic
● Learn an improvement heuristic
● Learn a branching policy in branch-and-bound
● …

RL Training (see survey [8])

● Value-based (i.e. Q-learning, DQN)
● Policy-based (i.e. REINFORCE, PPO, A3C,) 
● MCTS 
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How to encode graph problem structure?

● Key idea: 
○ Learn a representation at each node that encodes crucial graph structure for the CO problem
○ Scale linearly with # nodes and # edges

● Structure2Vec (S2V) in Khalil et al. [9]

● Survey Paper from Cappart et.al. [10]
● Attention-based encoder-decoder in Kool et al. [11]
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Methodology ● Graph Attention Network
● Optimization
● Implementation Details
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Problem Formulation

Given:

● Problem instance s with a fixed starting node and n nodes to visit (each 
specified by 2d-coordinates)

Goal:

● Construct a tour through all graph nodes 𝜋 = {𝜋0, 𝜋1, 𝜋2, … , 𝜋n} (𝜋0 fixed) using a 
stochastic policy p𝛳(𝜋|s) = 𝚷t=1..n p𝛳(𝜋t|s,𝜋0:t-1) with parameters 𝛳
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Problem Formulation

Goal:

● Construct a tour through all graph nodes 𝜋 = {𝜋0, 𝜋1, 𝜋2, … , 𝜋n} (𝜋0 fixed) using a 
stochastic policy p𝛳(𝜋|s) = 𝚷t=1..n p𝛳(𝜋t|s,𝜋0:t-1) with parameters 𝛳

MDP formulation (for each of the n timesteps t):

● State: the partial tour constructed 𝜋0:t-1

● Actions: select an unvisited node 𝜋t

● Reward: negative cost of partial tour 𝜋0:t

● Discount factor: 1
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Method Overview

● To encode the node selection policy p𝛳(𝜋|s), adapt the encoder-decoder based 
graph attention network implemented by Kool et al. [11]

○ Effectiveness already demonstrated on multiple routing problems such as TSP
○ Previously tested on graphs with up to 100 nodes

● This model is autoregressive, so outputs can be conditioned on partial tours 
● Main components:

○ Attention-based Encoder & Decoder
○ REINFORCE optimization with baseline
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Graph 
instance Encoder Decoder MLP tour

REINFORCE gradient update

Construct partial 
tour x n

Node 
embeddings



Attention-based Encoder 

● All node coordinates xi are embedded to 128-d hi
(N) using N=3 attention layers

○ Each layer consists of a multi-headed attention (MHA) and feed-forward (FF) sublayer
○ Each MHA has M=8 attention heads, and FF layer has hidden dimension 512 & RELU activation

● Graph embedding h(g)
(N) is computed as mean of all hi

(N)

Image source: [11] 18



Attention-based Decoder

● At each time step t = 1..n, the decoder computes p𝛳(𝜋t= i | s, 𝜋0:t-1) ∀ i ∈ {1, …, n}
○ A context embedding h(c)

(N) = [h(g)
(N), ht-1

(N)] and all node embeddings hi
(N) are inputted to a MHA 

layer which computes a new context node embedding h(c)
(N+1)

○ A single attention head + softmax layer computes compatibility with all unvisited nodes

● Visited nodes are masked out 

Image source: [11] 19



Decoding Methods

● Given p𝛳(𝜋t= i | s, 𝜋0:t-1) at each time step t, either greedy or sampling-based 
decoding can be used:

○ Greedy decoding: select the node i with the highest probability
○ Sampling-based decoding: randomly select a node using the given probability distribution

● Trade-off between runtime and solution quality:
○ Greedy is faster as it only produces 1 solution of reasonable quality
○ Sampling can be used to sample W solutions and select the best (slower but higher quality)

■ Following [11], we use W = 1280 
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Policy Optimization

● Given the policy p(𝜋|s) = p𝛳(𝜋|s) and the cost of the sampled MLP tour 𝐿(𝜋), the 
loss function is 

𝓛(𝛳|s) = 𝔼p(𝜋|s)[𝐿(𝜋)]    

● To optimize 𝓛(𝛳|s), use grad. descent on the REINFORCE grad. estimate [12]

 ∇𝓛(𝛳|s) = 𝔼p(𝜋|s)[(𝐿(𝜋) - b(s))∇log(p(𝜋|s))] 

● b(s) is a greedy baseline (tour cost from best greedy policy so far)
● After each epoch, the baseline is replaced by the training policy if there is 

significant improvement (according to a t-test over 10k instances)
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Implementation Details

● Used the ADAM optimizer with a constant learning rate of 10-4

○ Trained the policy using 1 GPU with a batch size of 1024
○ Trained for 140 epochs (except for 100-node graphs, trained for 200 epochs)

● Used CPU during test time for fair comparison to other methods
● The code is largely based on that of Kool et al. [M1] with modifications to 

problem environment, loss function, decoder context, and data generation. 
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Implementation Details

● Used 1 GPU for training and multiple CPUs during test time for fair comparison 
to other methods

● The code is largely based on that of Kool et al. [11] with modifications to the 
loss function, decoder context, and data generation
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Experimental 
Setup ● Dataset

● Baseline Methods
● Evaluation Metrics
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Dataset

25

Euclidean distance between 
node i and node j

Service time for node i

symmetric

2-D synthetic datasets

● Locations randomly sampled from [0, 1]2

● Cost matrix                defines the edge costs
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Dataset

26

s

Euclidean distance between 
node i and node j

Service time for node i

         S0:

S1:

S2:

symmetric

asymmetric

for starting node

Three classes [3]:

2-D synthetic datasets

● Locations randomly sampled from [0, 1]2

● Cost matrix                defines the edge costs



Baseline Methods

● Exact: CPLEX MIP [3]
○ Solve for small graphs with up to 30 nodes
○ Default CPLEX setting
○ 2 hour limit
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Baseline Methods

● Exact: CPLEX MIP [3]
○ Solve for small graphs with up to 30 nodes
○ Default CPLEX setting
○ 2 hour limit

● Heuristics: 
○ Nearest Neighbor (NN)  -- greedy
○ Nearest Neighbor-softmax (NN-softmax) -- sampling-based
○ GILS-RVND [9]  -- state-of-the-art MLP heuristic
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Evaluation Metrics

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

Symmetric graphs with N = 10, 20, 30, 50, 100
25 test instances per graph size 
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Evaluation Metrics

● Quality of solutions
○ Optimality gap for small graphs (up to 30 nodes)
○ Objective values of different heuristics for all graph sizes

● Runtime
● Generalization to different sizes

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

Symmetric graphs with N = 10, 20, 30, 50, 100
25 test instances per graph size 



Experimental 
Results

● Optimality on Small Graphs
● Scaling to Large Graphs
● Generalization Over Graph 

Sizes
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Optimality on Small Graphs
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Scaling to Larger Graphs
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Generalization to Different Sizes
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Generalization to Different Sizes (Optimality)
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Conclusion

● RL is a compelling approach for deriving construction heuristics for the 
Minimum Latency Problem

○ Competitive with hand-engineered approaches at low run-times
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Next Steps

● Can the solutions constructed by RL be synergistically combined with local 
search methods (i.e. GILS) to produce even higher quality results?

● Evaluate on asymmetric graphs where service times are non-zero



Thank you for listening!

Questions?
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