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PFO b | e m e Minimum Latency Problem

e Why is it important?




Typically in Traveling Salesman Problem ...
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Minimize the total travel time of the delivery person




What if we want to be more customer-oriented ?
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Minimize the total latency experienced at every node




Minimum Latency Problem (MLP)
Graph: G = (V, F)

T Cost: ¢(m;, ;) between every pair of nodes
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Can a TSP solution solve MLP too?

Example in 1-d
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An optimal TSP route The best MLP route
S>t->tL2>t3>14 S>B>t>12>14
has a total latency of has a total latency of
1+7+16 + 27 =51 2+5+11+31=49

Early decisions can have a significant impact on overall cost (because the latency adds up)

No way to decompose the problem into smaller subproblems easily 5



Main Contributions

< We apply reinforcement learning and attention-based graph neural networks to

solve the NP-hard minimum latency problem.

% Our solution are on par with domain-specific, hand-engineered solutions from

literature.



Related Works . GILS.RVND

e RL for CO
e GNN




History of Problem Formulations

Delivery man problem [1]
- Symmetric Graph
Traveling repairman problem [2]

- Each node also takes some time to repair
- Asymmetric Graph (by adding repair time of the node to the travel time of all
outgoing edges)



Exact / Approximate / Heuristic Solutions

Exact Solutions

e Integer Programming Formulations [1, 2, 3] and solve with CPLEX
e Branch-cut-price [4] can solve 106 nodes (largest graph with optimal solution)

Approximate Solutions

e Blum et.al [5] gives a polynomial time, 72-approximation ratio algorithm
e Chaudhri et.al [6] gives a 3.59-approximation ratio algorithm

Heuristics

e GILS-RVND [/] can give high-quality solutions for up-to 1000 nodes
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GILS-RVND

Fori=1..M:
Construct an initial solution with GRASP (Greedy Randomized Adaptive Search Procedures)
do
Improve the solution with RVND (Randomized-order Variable Neighborhood Descent)
Update the best seen solution if possible
Perturb the current solution locally

until ILS (iterative local search) has not improved the best seen solution for N steps
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RL for combinatorial optimization

Formulate CO as an MDP and

Learn a construction heuristic
Learn an improvement heuristic
Learn a branching policy in branch-and-bound

RL Training (see survey [8])

Value-based (i.e. Q-learning, DQN)
Policy-based (i.e. REINFORCE, PPO, A3C,)
MCTS

MDP

Agent

|States/Rewards

Actions
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How to encode graph problem structure?

e Keyidea:

o Learn a representation at each node that encodes crucial graph structure for the CO problem
o Scale linearly with # nodes and # edges

e Structure2Vec (S2V) in Khalil et al. [9]

/™)
O

e Survey Paper from Cappart et.al. [10]
e Attention-based encoder-decoder in Kool et al. [11]
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Methodology

Graph Attention Network
Optimization
Implementation Details
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Problem Formulation

Given:

e Problem instance s with a fixed starting node and n nodes to visit (each

specified by 2d-coordinates)
Goal:
e Construct a tour through all graph nodes & = {r, 7, 7

stochastic policy p(zls) =I1_, _p(rls.z,..)

2’

.., T } (7, fixed) using a
with parameters O
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Problem Formulation

Goal:

e Construct a tour through all graph nodes & = {z, 7, &

stochastic policy p (zls) = 11

p o -5 T} (T, fixed) using a

(T ls,t ., ,) with parameters O

t=1..n 'OO O:t1

MDP formulation (for each of the n timesteps 1):

State: the partial tour constructed =z, ,
Actions: select an unvisited node ,
Reward: negative cost of partial tour
Discount factor: 1
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Method Overview

e To encode the node selection policy p (7ls), adapt the encoder-decoder based

graph attention network implemented by Kool et al. [11]
o Effectiveness already demonstrated on multiple routing problems such as TSP
o  Previously tested on graphs with up to 100 nodes
e This model is autoregressive, so outputs can be conditioned on partial tours

e Main components:

o Attention-based Encoder & Decoder
o REINFORCE optimization with baseline Construct partial
tour x n

Node
Graph embeddings

MLP tour

instance

REINFORCE gradient update 17



Attention-based Encoder

e All node coordinates x, are embedded to 128-d h,.‘N’ using N=3 attention layers

Each layer consists of a multi-headed attention (MHA) and feed-forward (FF) sublayer

O
Each MHA has M=8 attention heads, and FF layer has hidden dimension 512 & RELU activation

(@)

e Graph embedding h(g)‘N’ is computed as mean of all h™

ﬁncoder

O Node input

O Node embedding

O Graph embedding

¢ Message
+ Projection

+ Skip connection

; Attention query

Image source: [11]
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Attention-based Decoder

® Ateachtime stept=1.n, the decoder computes p (t=ils, 7, )V i€{l, .., n}
o A context embedding h(c)‘N) = [h(g)‘N’, h, ™1 and all node embeddings h™ are inputted to a MHA
layer which computes a new context node embedding h(c)‘N”’
o Asingle attention head + softmax layer computes compatibility with all unvisited nodes

e Visited nodes are masked out

/ B WY B ™ h(h ,/
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|| Output probability

MHA |
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Image source: [11]

¢ Message

; Attention query

. Compatibility

i Identity / reference




Decoding Methods

Givenp (t=1ils, 7, ) at each time step ¢, either greedy or sampling-based

decoding can be used:

o Greedy decoding: select the node i with the highest probability

o Sampling-based decoding: randomly select a node using the given probability distribution
Trade-off between runtime and solution quality:

o Greedy is faster as it only produces 1 solution of reasonable quality
o Sampling can be used to sample W solutions and select the best (slower but higher quality)
m Following [11], we use W =1280
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Policy Optimization

e Given the policy p(rls) = p (ls) and the cost of the sampled MLP tour L(x), the
loss function is

LOls)=E . [L7)]

p(rls)

e To optimize L(Ols), use grad. descent on the REINFORCE grad. estimate [12]
VLOls) = B, [(Lix) - b(s)) V log(plls))

® D(s)is a greedy baseline (tour cost from best greedy policy so far)
e After each epoch, the baseline is replaced by the training policy if there is
significant improvement (according to a t-test over 10k instances)
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Implementation Details

e Used the ADAM optimizer with a constant learning rate of 10

o Trained the policy using 1 GPU with a batch size of 1024
o Trained for 140 epochs (except for 100-node graphs, trained for 200 epochs)

e Used CPU during test time for fair comparison to other methods
e The code is largely based on that of Kool et al. [M1] with modifications to

problem environment, loss function, decoder context, and data generation.
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Implementation Details

e Used 1GPU for training and multiple CPUs during test time for fair comparison
to other methods

e The code is largely based on that of Kool et al. [11] with modifications to the
loss function, decoder context, and data generation
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Experimental
Setup

e Dataset
e Baseline Methods
e FEvaluation Metrics
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Dataset

2-D synthetic datasets

e Locations randomly sampled from [0, 1]
e Cost matrix C = (¢;;) defines the edge costs

™

2

C12 Service time for node i

o  co1

f
T3 Cf,;j = tZJ -+ Si 5i = () [symmetric

l

Euclidean distance between
node i and node j
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Three classes [3]:

Dataset so: s; =0 symmetric

S1 S'i ~J [O, tmam_tmin

2

asymmetric

2-D synthetic datasets

52: S’I, A [tmam;tmin, 3tma:z:2_tmin

e Locations randomly sampled from [O, 1]

e Cost matrix ¢ = (¢;;) defines the edge costs

t1
t2 Service time for node i
C12

f
Cij — t'l,] + 87; s; = 0 for starting node

l

Euclidean distance between
node i and node j

t3

ta 26




Baseline Methods

e Exact: CPLEX MIP [3]

o Solve for small graphs with up to 30 nodes
o Default CPLEX setting
o 2 hour limit
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Baseline Methods

e Exact: CPLEX MIP [3]

o Solve for small graphs with up to 30 nodes
o Default CPLEX setting
o 2 hour limit

e Heuristics:

o Nearest Neighbor (NN) -- greedy
o Nearest Neighbor-softmax (NN-softmax) -- sampling-based
o  GILS-RVND [9] -- state-of-the-art MLP heuristic
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Evaluation Metrics

Symmetric graphs with N =10, 20, 30, 50, 100
25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND
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Evaluation Metrics

Symmetric graphs with N =10, 20, 30, 50, 100
25 test instances per graph size

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

e Quality of solutions

o  Optimality gap for small graphs (up to 30 nodes)
o  Objective values of different heuristics for all graph sizes

e Runtime
e Generalization to different sizes
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Experimental
Results

Optimality on Small Graphs
Scaling to Large Graphs
Generalization Over Graph
Sizes
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Optimality on Small Graphs

Optimality Gap %

101 .

100 .

10—1 .

102 5

103 4

10—4 .

nn

nn rl-greedy

nn-softmax gils rl-sample

size

10 [ 5.1664 0.2960 1.7978 1.6027 0.0001
15 | 7.3307 - 0.8155 1.4142 -

20 | 6.5527 1.0409 1.3706 1.3758  0.5790
25 |10.9506 - 2.1460 0.9404 -

30 [10.3219 2.5990 1.9768 0.8012 0.9650

nn-softmax
gils
—— rl-greedy
— rl-sample
10 15 20 25 30
Size
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nn rl-greedy nn-softmax gils rl-sample
cost runtime cost runtime| cost runtime cost runtime cost runtime
size

Sca“ng to Larger Graphs 10 [13.70 001 13.09 0.01 gi*{' géi ;;1%22 g:gg 13.05 0.0

15 2287 0.01 - - -
20 [36.25 0.01 34.36 0.02 |3447 0.85 3446 0.01 34.19 0.10
25 |51.46 0.01 - - 4741 1.07  46.88  0.02 - -

30 [65.61 001 61.09 0.02 [60.72 130 60.02 0.03 60.11 0.21
50 [140.83 0.01 131.90 0.04 |130.27 2.23 126.88 0.25 128.90 0.57
100 {390.56 0.01 365.90 0.07 [362.22 4.88 343.92 4.93 354.30 2.46

0_. _______________________________________
3 10° 4
=z
=
e 0
[0) o 10—1_
.% -g
< [
o
>
= 1072 4
©
>
o
10_3 T T T T T
20 40 60 80 100
Size
-==nn —== nn-softmax === gils —— rl-greedy —— rl-sample
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Generalization to Different Sizes

Quality Relative to In-Distribution Model (%)

25 1

20 -

15 ~

10 A

—— Nyain= 10
— Ntrain =50
—— Nirain =100
=== Ntrain = Ntest
——- NN Baseline

-thrain, =10 thrain =50 l\rtrain. = 100

Niest

10 0.00 5.90 14.50
20 2.02 3.84 5.95
30 6.73 1.26 4.89
50 14.86 0.00 2.12
100 26.61 0.98 0.00

Test Instance Size
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Generalization to Different Sizes (Optimality)

Optimality Gap %

10 15 20 25 30
Size
-==- nn —— N_train=10 —— N_train=20 —— N_train=30
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Conclusion

e RL is a compelling approach for deriving construction heuristics for the

Minimum Latency Problem
o  Competitive with hand-engineered approaches at low run-times

Next Steps

e Can the solutions constructed by RL be synergistically combined with local
search methods (i.e. GILS) to produce even higher quality results?
e Evaluate on asymmetric graphs where service times are non-zero
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Thank you for listening!

Questions?
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