
Learning Heuristics for Minimum
Latency Problem with RL & GNN

Siqi Hao, Salar Hosseini, Philip Huang, Mohamed Khodeir

December 6, 2021

1

Problem ● Minimum Latency Problem
● Why is it important?

2

Typically in Traveling Salesman Problem …

Minimize the total travel time of the delivery person
3

What if we want to be more customer-oriented ?

Minimize the total latency experienced at every node
4

Minimum Latency Problem (MLP)

Graph:

Cost: between every pair of nodes

Path:

MLP Objective

5

Latency at node i

Total latency except the starting node

Can a TSP solution solve MLP too?

Example in 1-d

An optimal TSP route The best MLP route

s -> t1 -> t2 -> t3 -> t4 s -> t3 -> t1 -> t2 -> t4

has a total latency of has a total latency of

1 + 7 + 16 + 27 = 51 2 + 5 + 11 + 31 = 49

Early decisions can have a significant impact on overall cost (because the latency adds up)

No way to decompose the problem into smaller subproblems easily 6

Main Contributions

❖ We apply reinforcement learning and attention-based graph neural networks to

solve the NP-hard minimum latency problem.

❖ Our solution are on par with domain-specific, hand-engineered solutions from

literature.

7

Related Works ● GILS-RVND
● RL for CO
● GNN

8

History of Problem Formulations

Delivery man problem [1]

- Symmetric Graph

Traveling repairman problem [2]

- Each node also takes some time to repair
- Asymmetric Graph (by adding repair time of the node to the travel time of all

outgoing edges)

9

Exact / Approximate / Heuristic Solutions

Exact Solutions

● Integer Programming Formulations [1, 2, 3] and solve with CPLEX
● Branch-cut-price [4] can solve 106 nodes (largest graph with optimal solution)

Approximate Solutions

● Blum et.al [5] gives a polynomial time, 72-approximation ratio algorithm
● Chaudhri et.al [6] gives a 3.59-approximation ratio algorithm

Heuristics

● GILS-RVND [7] can give high-quality solutions for up-to 1000 nodes

10

GILS-RVND

For i = 1 … M:

Construct an initial solution with GRASP (Greedy Randomized Adaptive Search Procedures)

do

Improve the solution with RVND (Randomized-order Variable Neighborhood Descent)

Update the best seen solution if possible

Perturb the current solution locally

until ILS (iterative local search) has not improved the best seen solution for N steps

11

RL for combinatorial optimization

Formulate CO as an MDP and

● Learn a construction heuristic
● Learn an improvement heuristic
● Learn a branching policy in branch-and-bound
● …

RL Training (see survey [8])

● Value-based (i.e. Q-learning, DQN)
● Policy-based (i.e. REINFORCE, PPO, A3C,)
● MCTS

12

How to encode graph problem structure?

● Key idea:
○ Learn a representation at each node that encodes crucial graph structure for the CO problem
○ Scale linearly with # nodes and # edges

● Structure2Vec (S2V) in Khalil et al. [9]

● Survey Paper from Cappart et.al. [10]
● Attention-based encoder-decoder in Kool et al. [11]

13

Methodology ● Graph Attention Network
● Optimization
● Implementation Details

14

Problem Formulation

Given:

● Problem instance s with a fixed starting node and n nodes to visit (each
specified by 2d-coordinates)

Goal:

● Construct a tour through all graph nodes 𝜋 = {𝜋0, 𝜋1, 𝜋2, … , 𝜋n} (𝜋0 fixed) using a
stochastic policy p𝛳(𝜋|s) = 𝚷t=1..n p𝛳(𝜋t|s,𝜋0:t-1) with parameters 𝛳

15

Problem Formulation

Goal:

● Construct a tour through all graph nodes 𝜋 = {𝜋0, 𝜋1, 𝜋2, … , 𝜋n} (𝜋0 fixed) using a
stochastic policy p𝛳(𝜋|s) = 𝚷t=1..n p𝛳(𝜋t|s,𝜋0:t-1) with parameters 𝛳

MDP formulation (for each of the n timesteps t):

● State: the partial tour constructed 𝜋0:t-1

● Actions: select an unvisited node 𝜋t

● Reward: negative cost of partial tour 𝜋0:t

● Discount factor: 1

16

Method Overview

● To encode the node selection policy p𝛳(𝜋|s), adapt the encoder-decoder based
graph attention network implemented by Kool et al. [11]

○ Effectiveness already demonstrated on multiple routing problems such as TSP
○ Previously tested on graphs with up to 100 nodes

● This model is autoregressive, so outputs can be conditioned on partial tours
● Main components:

○ Attention-based Encoder & Decoder
○ REINFORCE optimization with baseline

17

Graph
instance Encoder Decoder MLP tour

REINFORCE gradient update

Construct partial
tour x n

Node
embeddings

Attention-based Encoder

● All node coordinates xi are embedded to 128-d hi
(N) using N=3 attention layers

○ Each layer consists of a multi-headed attention (MHA) and feed-forward (FF) sublayer
○ Each MHA has M=8 attention heads, and FF layer has hidden dimension 512 & RELU activation

● Graph embedding h(g)
(N) is computed as mean of all hi

(N)

Image source: [11] 18

Attention-based Decoder

● At each time step t = 1..n, the decoder computes p𝛳(𝜋t= i | s, 𝜋0:t-1) ∀ i ∈ {1, …, n}
○ A context embedding h(c)

(N) = [h(g)
(N), ht-1

(N)] and all node embeddings hi
(N) are inputted to a MHA

layer which computes a new context node embedding h(c)
(N+1)

○ A single attention head + softmax layer computes compatibility with all unvisited nodes

● Visited nodes are masked out

Image source: [11] 19

Decoding Methods

● Given p𝛳(𝜋t= i | s, 𝜋0:t-1) at each time step t, either greedy or sampling-based
decoding can be used:

○ Greedy decoding: select the node i with the highest probability
○ Sampling-based decoding: randomly select a node using the given probability distribution

● Trade-off between runtime and solution quality:
○ Greedy is faster as it only produces 1 solution of reasonable quality
○ Sampling can be used to sample W solutions and select the best (slower but higher quality)

■ Following [11], we use W = 1280

20

Policy Optimization

● Given the policy p(𝜋|s) = p𝛳(𝜋|s) and the cost of the sampled MLP tour 𝐿(𝜋), the
loss function is

𝓛(𝛳|s) = 𝔼p(𝜋|s)[𝐿(𝜋)]

● To optimize 𝓛(𝛳|s), use grad. descent on the REINFORCE grad. estimate [12]

 ∇𝓛(𝛳|s) = 𝔼p(𝜋|s)[(𝐿(𝜋) - b(s))∇log(p(𝜋|s))]

● b(s) is a greedy baseline (tour cost from best greedy policy so far)
● After each epoch, the baseline is replaced by the training policy if there is

significant improvement (according to a t-test over 10k instances)

21

Implementation Details

● Used the ADAM optimizer with a constant learning rate of 10-4

○ Trained the policy using 1 GPU with a batch size of 1024
○ Trained for 140 epochs (except for 100-node graphs, trained for 200 epochs)

● Used CPU during test time for fair comparison to other methods
● The code is largely based on that of Kool et al. [M1] with modifications to

problem environment, loss function, decoder context, and data generation.

22

Implementation Details

● Used 1 GPU for training and multiple CPUs during test time for fair comparison
to other methods

● The code is largely based on that of Kool et al. [11] with modifications to the
loss function, decoder context, and data generation

23

Experimental
Setup ● Dataset

● Baseline Methods
● Evaluation Metrics

24

Dataset

25

Euclidean distance between
node i and node j

Service time for node i

symmetric

2-D synthetic datasets

● Locations randomly sampled from [0, 1]2

● Cost matrix defines the edge costs

2626

Dataset

26

s

Euclidean distance between
node i and node j

Service time for node i

 S0:

S1:

S2:

symmetric

asymmetric

for starting node

Three classes [3]:

2-D synthetic datasets

● Locations randomly sampled from [0, 1]2

● Cost matrix defines the edge costs

Baseline Methods

● Exact: CPLEX MIP [3]
○ Solve for small graphs with up to 30 nodes
○ Default CPLEX setting
○ 2 hour limit

27

28

Baseline Methods

● Exact: CPLEX MIP [3]
○ Solve for small graphs with up to 30 nodes
○ Default CPLEX setting
○ 2 hour limit

● Heuristics:
○ Nearest Neighbor (NN) -- greedy
○ Nearest Neighbor-softmax (NN-softmax) -- sampling-based
○ GILS-RVND [9] -- state-of-the-art MLP heuristic

292929

Evaluation Metrics

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

Symmetric graphs with N = 10, 20, 30, 50, 100
25 test instances per graph size

3030

Evaluation Metrics

● Quality of solutions
○ Optimality gap for small graphs (up to 30 nodes)
○ Objective values of different heuristics for all graph sizes

● Runtime
● Generalization to different sizes

Greedy construction methods: RL + greedy decoding, Nearest Neighbor (NN)

Sampling-based methods: RL + sampling-based decoding, NN-softmax, GILS-RVND

Symmetric graphs with N = 10, 20, 30, 50, 100
25 test instances per graph size

Experimental
Results

● Optimality on Small Graphs
● Scaling to Large Graphs
● Generalization Over Graph

Sizes

31

Optimality on Small Graphs

32

Scaling to Larger Graphs

33

Generalization to Different Sizes

34

Generalization to Different Sizes (Optimality)

35

Conclusion

● RL is a compelling approach for deriving construction heuristics for the
Minimum Latency Problem

○ Competitive with hand-engineered approaches at low run-times

36

Next Steps

● Can the solutions constructed by RL be synergistically combined with local
search methods (i.e. GILS) to produce even higher quality results?

● Evaluate on asymmetric graphs where service times are non-zero

Thank you for listening!

Questions?

37

References
[1] F. Angel-Bello, A. Alvarez, and I. García, “Two improved formulations for the minimum latency problem,”Applied Mathematical Modelling, vol. 37, no. 4, pp. 2257–2266, 2013.

[2] van Ca Cleola Eijl, “A polyhedral approach to the delivery man problem,” 1995.

[3] I. Méndez-Díaz, P. Zabala, and A. Lucena, “A new formulation for the traveling deliveryman problem,”Discrete applied mathematics, vol. 156, no. 17, pp. 3223–3237, 2008.

[4] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, “The time dependent traveling salesman problem: polyhedra and algorithm,”Mathematical Programming Computation, vol. 5, no. 1, pp.27–55, 2013.

[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan, “The minimum latency problem,” inProceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, ser.
STOC ’94.New York, NY, USA: Association for Computing Machinery, 1994, p. 163–171.

[6] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, “Paths, trees, and minimum latency tours,” in FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science.IEEE, January 2003, p. 36.

[7] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, “A simple and effective metaheuristic for the minimum latency problem”, European Journal of Operational Research, vol. 221, no. 3, pp. 513–520, 2012.

[8] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for combinatorial optimization: A survey,”Computers Operations Research, vol. 134,p. 105400, 2021

[9] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,”

[10] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veliˇckovi ́c, “Combinatorial optimization and reasoning with graph neural networks,” 2021.

[11] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing problems!” 2019.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4, p. 229–256, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992696

38

